C2—N1—C5 N1—C2—N3	114.11 (14) 106.79 (14)	N3-C4-C5 N1-C5-C51	106.65 (13) 111.72 (13)
NI-C2-S N3-C2-S	128.75 (13) 124.46 (12)	C51-C5-C61	109.64 (13)
C2—N3—C4 O—C4—N3	112.51 (14) 126.7 (2) 126.66 (15)	N1C5C4 C4C5C51 C4C5C61	99.93 (12) 107.29 (13)
N1C5C51C52	29.2 (2)	N1-C5-C61-C62	68.9 (2)
N1—C5—C51—C56 C4—C5—C51—C52	-156.2 (2) -79.4 (2)	N1—C5—C61—C66 C4—C5—C61—C62	-106.9 (2) 179.3 (2)
C4C5C51C56	95.2 (2)	C4C5C61C66	3.5 (2)

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - H1 \cdot \cdot \cdot S^{i}$	0.84 (2)	2.56 (2)	3.394 (2)	174 (2)
N3—H3· · ·O ^µ	0.87 (2)	2.25 (2)	3.094 (2)	165 (2)
Symmetry codes: ((i) $-x, 2-y, -$	-z; (ii) ½ +.	$x, \frac{3}{2} - y, \frac{1}{2} +$	Ζ.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: Xtal3.0 (Hall & Stewart, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: OR-TEPII (Johnson, 1976) and PLUTON (Spek, 1992). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1365). Services for accessing these data are described at the back of the journal.

References

- Biltz, H. (1909). Ber. Dtsch Chem. Ges. 41, 1792-1796.
- Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205-2211.
- Chattopadhyay, T. K., Palmer, R. A. & Lisgarten, J. N. (1993). J. Crystallogr. Spectrosc. Res. 23, 149-152.
- Cristiani, F., Demartin, F., Devillanova, F. A., Isaia, F., Saba, G. & Verani, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3553-3560.
- Demartin, F., Devillanova, F. A., Diaz, A., Isaia, F., Lippolis, V. & Verani, G. (1992). *Phosphorus Sulfur Silicon*, 70, 121-130.
- Devillanova, F. A., Isaia, F., Verani, G., Battaglia, L. P. & Corradi, A. B. (1987). J. Chem. Res. (M), pp. 1617–1638.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gesler, R. M., Lints, C. E. & Swinyard, E. A. (1961). Toxicol. Appl. Pharmacol. 3, 107-121.
- Hall, S. R. & Stewart, J. M. (1990). Editors. *Xtal3.0 Reference Manual*. Universities of Western Australia, Australia, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kozelka, F. L., Hine, C. H. & Greiber, M. F. (1942). Fed. Proc. 1, 156.
- McLean, M. J. & Macdonald, R. L. (1983). J. Pharmacol. Exp. Ther. 227, 779–789.
- Ramsay, R. E., Wilder, B. J., Berger, J. R. & Bruni, J. (1983). Neurology, 33, 904–910.
- Roszak, W. A., Milne, P. & Weaver, D. F. (1995). Acta Cryst. C51, 1297–1300.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1992). *PLUTON92. Molecular Graphics Program.* University of Utrecht, The Netherlands.
- Walker, L. A., Folting, K. & Merritt, L. L. Jr (1969). Acta Cryst. B25, 88–93.
- Weaver, D. F. (1992). Seizure, 1, 223-246.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1998). C54, 1170-1173

Racemic 2-Hydroxy-2-phenylpropanamidinium Chloride and (S)-2-Hydroxy-2-phenylbutanamidinium (R)-2-Hydroxy-2-phenylethanoate

JOHN C. BARNES^{*a*} AND TIMOTHY J. R. WEAKLEY^{*b*}

^aDepartment of Chemistry, University of Dundee, Perth Road, Dundee DD1 4HN, Scotland, and ^bDepartment of Chemistry, University of Oregon, Eugene, OR 97403-1253, USA. E-mail: j.c.barnes@dundee.ac.uk

(Received 26 September 1997; accepted 9 February 1998)

Abstract

In 2-hydroxy-2-phenylpropanamidinium chloride, C_9H_{13} - N_2O^+ . Cl^- , the anion plays a central role in the hydrogen-bond network, chelating to one amidinium group and forming intermolecular links to neighbouring NH₂ and OH⁻ groups. The central feature in (*S*)-2-hydroxy-2-phenylbutanamidinium (*R*)-2-hydroxy-2-phenylethanoate, $C_{10}H_{15}N_2O^+$. $C_8H_7O_3^-$, is a ring linking the cation and anion through two hydrogen bonds. The structure is extended by intra- and intermolecular hydrogen bonds.

Comment

For almost 80 years, stereochemical studies of derivatives of mandelic (2-hydroxy-2-phenylethanoic) and atrolactic (2-hydroxy-2-phenylpropanoic) acids and the corresponding amidines have been carried out in what is now the University of Dundee (see *e.g.* McKenzie & Wren, 1919; Roger & Neilson, 1959). The supramolecular structures of the title compounds, (I) and (II), have now been investigated as part of a study of extended hydrogen-bond systems (Barnes & Barnes, 1996; Barnes *et al.*, 1998), using crystals from the original preparations (Roger & Neilson, 1959).

(III)

Allowing for chirality, the stereochemistries of (I) (Fig. 1) and of the cation and anion in (II) (Fig. 2) are similar. In each, the hydroxyl group is involved in both intramolecular interactions and intermolecular hydrogen bonds. The motif N2—H21···O5—H51···Cl' in (I) corresponds to N2—H2B···O5—H5A···O21' for the cation in (II) and O22···H25A—O25···H1B''— N1" for the anion (symmetry positions are given in Tables 2 and 4). The intramolecular interaction in the rings N2---H21···O5---C4---C3, N2---H2B···O5---C4-C3 and O22···H25A-O25-C24-C23 requires a very small angle at the H atom: $109(1)^{\circ}$ in (I), $116(4)^{\circ}$ in the cation of (II) and $128 (4)^{\circ}$ in the anion of (II). The torsion angles N2—C3—C4—O5 are $-25.8(2)^{\circ}$ in (I) and 9.0 (4)° in (II), and 7.1 (2)° for O22-C23-C24-O25 in (II). In the Etter notation these rings are $R_1^1(5)$. (Bernstein et al., 1995).

The hydrogen-bonding network in (I) has much in common with that in chiral benzamidinium chloride monohydrate (Thailambal *et al.*, 1986), in which the

Fig. 1. Structure of (1), showing 50% probability displacement ellipsoids.

CH

C30

Fig. 3. Hydrogen-bonding network in (I), showing the tetrahedral coordination of C11.

The familiar hydrogen-bond motif, $R_2^2(8)$, found in carboxylic acid dimers is also known in amidines, (III) (Sohar, 1967). The same motif occurs in some 2-hydroxyamidinium carboxylate salts such as (II) (Fig. 4) and (S)-o-bromomandelamidinium (R)-mandelate (Iball *et al.*, 1982). These workers also examined the less stable diastereomer (R)-o-bromo-

(*b*)

021

C31

(a)

Fig. 4. Hydrogen-bonding network in (II); O atoms are shown solid and N atoms are shown hatched.

mandelamidinium (R)-mandelate, (IV), in which the $R_2^2(8)$ motif is replaced by an $R_2^2(9)$ ring involving the hydroxyl group of the mandelate. The facile resolution of the series of racemic amidines into their pure (R)or (S)-mandelate salts (Roger & Neilson, 1959) must be associated with these alternative hydrogen-bonding schemes.

Experimental

Crystals were available from the original preparation by Roger & Neilson (1959).

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.34 \times 0.27 \times 0.18$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.334 \text{ mm}^{-1}$

T = 293(2) K

 $\theta = 14 - 15^{\circ}$

Colourless

 $R_{\rm int} = 0.011$

 $\theta_{\rm max} = 24.97^{\circ}$

 $h = -1 \rightarrow 10$

 $l = -13 \rightarrow 13$

3 standard reflections

frequency: 60 min

intensity decay: 3%

 $k = 0 \rightarrow 12$

Block

Compound (I)

Crystal data $C_9H_{13}N_2O^+.Cl^ M_r = 200.66$ Monoclinic $P2_{1}/n$ a = 8.8847(6) Å b = 10.483(1) Å c = 11.6776(13) Å $\beta = 108.375 \, (8)^{\circ}$ $V = 1032.18(17) \text{ Å}^3$ Z = 4 $D_x = 1.291 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer ω –2 θ scans Absorption correction: none 2193 measured reflections 1814 independent reflections 1573 reflections with $I > 2\sigma(I)$

Refinement

05 - C4 - C3

C6-C4-C3

 $w = 1/[\sigma^2(F_o^2) + (0.0493P)^2]$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ + 0.2343Pwhere $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.155$ $(\Delta/\sigma)_{\rm max} = 0.078$ S = 1.823 $\Delta \rho_{\rm max} = 0.677 \ {\rm e} \ {\rm \AA}^{-3}$ 1814 reflections $\Delta \rho_{\rm min} = -0.475 \ {\rm e} \ {\rm \AA}^{-3}$ 92 parameters Extinction correction: none H atoms treated by a Scattering factors from mixture of independent International Tables for and constrained refinement Crystallography (Vol. C)

107.7 (2)

111.8 (2)

Table 1. Sel	ected geomet	ric parameters (A	Å, °) for (I)
N1—C3 N2—C3 C3—C4	1.299 (4) 1.306 (4) 1.530 (4)	C405 C4C6 C4C8	1.414 (3) 1.526 (4) 1.542 (3)
N1-C3-N2 N1-C3-C4 N2-C3-C4 O5-C4-C6	120.8 (3) 121.7 (2) 117.5 (3)	O5C4C8 C6C4C8 C3C4C8	107.01 (19) 110.1 (2) 108.86 (19)

C9---C8---C4

C13-C8-C4

N2-C3-C4-O5	-25.8(2)	C3—C4—C8—C9	-124.50(18)
C3-C4-O5-H51	-74 (3)	O5-C4-C8-C9	-8.3(2)
N2-C3-C4-C8	90.1(2)		

Table 2. Hydrogen-bonding geometry $(Å, \circ)$ for (1)

$D - H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
N1—H11···CII	0.91 (4)	2.29 (4)	3.166 (3)	161 (3)
N2—H22· · · Cl1	0.82 (4)	2.56 (4)	3.291 (3)	149 (4)
N1-H12···Cl1 ¹	0.86(4)	2.37 (4)	3.204 (3)	165 (3)
O5—H51· · ·CI1"	0.81 (4)	2.32 (4)	3.127 (2)	170 (4)
Symmetry codes: (i)	$\frac{3}{3} - x, \frac{1}{3} + y,$	$-\frac{1}{2}$ - z; (ii	(1 - x, 1 - x)	$y_1 = 1 - z_1$

Compound (II)

Crystal data

 $C_{10}H_{15}N_2O^+.C_8H_7O_3^ M_r = 330.38$ Monoclinic $P2_1$ a = 7.3793 (9) Å b = 12.917 (4) Å c = 10.2713 (13) Å $\beta = 109.407 (11)^{\circ}$ V = 923.4 (3) Å³ Z = 2 $D_{\rm r} = 1.188 {\rm Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 2014 measured reflections 1865 independent reflections 1487 reflections with $l > 2\sigma(l)$

Refinement

NI-C3 N2-C3 C3-C4

C4---05

C4---C8

C4---C6 N2-C3-NI N2-C3-C4 N1 - C3 - C4O5-C4-C3

O5-C4-C8

C3-C4-C8

119.53 (14)

120.43 (14)

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.107$ S = 1.1111865 reflections 208 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0590P)^2]$ + 0.0456P] where $P = (F_o^2 + 2F_c^2)/3$

 $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 14.1 - 15.3^{\circ}$ $\mu = 0.084 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.50 \times 0.41 \times 0.09 \text{ mm}$ Colourless

Mo $K\alpha$ radiation

$R_{\rm int} = 0.012$
$\theta_{max} = 24.97^{\circ}$
$h = 0 \rightarrow 8$
$k = -1 \rightarrow 15$
$l = -12 \rightarrow 11$
3 standard reflections
frequency: 60 min
intensity decay: 3%

 $(\Delta/\sigma)_{\rm max} = 0.009$ $\Delta \rho_{\rm max} = 0.121 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.141 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure: Flack (1983)Flack parameter = 2.4(17)

Table 3. Selected geometric parameters (Å, °) for (II)

1.310(3)	C6C7	1.502 (6)
1.293 (4)	O21—C23	1.2468
1.524 (4)	O22—C23	1.2512
1.415(3)	C23—C24	1.5212
1.533(3)	C24—O25	1.4266
1.536 (5)	C24C26	1.4993 (19)
121.5 (3)	C9—C8—C4	117.28 (13)
118.2 (2)	C13-C8-C4	122.72 (13)
120.3 (3)	O21—C23—O22	125.6
104.3 (2)	O21—C23—C24	118.5
111.3 (2)	O22—C23—C24	115.9
109.2 (2)	O25-C24-C26	110.16 (10)

O5C4C6	109.8 (2)	O25-C24-C23	108.5
C3-C4-C6	108.2 (2)	C26-C24-C23	112.76 (9)
C8C4C6	113.5 (2)	C27—C26—C24	121.05 (16)
C7C6C4	115.0 (3)	C31-C26-C24	118.91 (16)
C9C8C13	120.0		
05C4C8C9	34.2 (2)	C3—C4—C8—C9	-80.43 (19)
O22-C23-C24-C26	-115.15(11)	N2-C3-C4-C6	-107.9(3)
O22-C23-C24-O25	7.1 (2)	C3-C4-C6-C7	61.2 (3)
C23-C24-C26-C27	38.69 (16)	N2-C3-C4-O5	9.0 (4)
N2C3C4C8	128.1 (3)		

Table 4. Hydrogen-bonding geometry (Å, °) for (II)

D—H···A	D—H	H···A	$D \cdot \cdot \cdot A$	$D - H \cdots A$
N1—H1A···O22	0.87 (4)	2.01 (4)	2.810(3)	153 (3)
N1—H1 <i>B</i> ···O25 ⁱ	0.88 (4)	2.04 (4)	2.869(3)	159 (3)
N2—H2A···O21	0.94 (5)	1.85 (5)	2.784 (3)	175 (4)
N2—H2 <i>B</i> ···O5	0.89 (4)	1.98 (4)	2.504 (3)	116 (4)
O5—H5A···O21"	0.71 (4)	1.97 (5)	2.675 (3)	176 (5)
O25—H25A···O22	0.89	1.89	2.535(2)	128.3
Symmetry codes: (i)	$1 - x, y - \frac{1}{2}$, 1 − <i>z</i> ; (ii) -	$-x, y - \frac{1}{2}, -$	Ζ.

For both compounds, data collection: *CAD*-4/*PC* (Enraf-Nonius, 1993); cell refinement: *CAD*-4/*PC*; data reduction: *XCAD*4 (Harms & Wocadlo, 1996); program(s) used to solve structures: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structures: *SHELXL*97 (Sheldrick, 1997*b*); molecular graphics: *PLATON*92 (Spek, 1992*a*) and *PLUTON*92 (Spek, 1992*b*); software used to prepare material for publication: *SHELXL*97.

Thanks are extended to Dr D. G. Neilson for the crystals, and for his interest in the work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1392). Services for accessing these data are described at the back of the journal.

References

- Barnes, H. A. & Barnes, J. C. (1996). Acta Cryst. C52, 731-736.
- Barnes, J. C., Longhurst, R. W. & Weakley, T. J. R. (1998). Acta Cryst. C54. In the press.
- Bernstein, J., Davis, R. E., Shimani, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1574.
- Enraf-Nonius (1993). CAD-4/PC Diffractometer Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1996). XCAD4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Iball, J., Low, J. N., Neilson, D. G. & Morgan, C. H. (1982). Cryst. Struct. Commun. 11, 349–354.
- McKenzie, A. & Wren, H. (1919). J. Chem. Soc. 115, 602-613.
- Roger, R. & Neilson, D. G. (1959). J. Chem. Soc. pp. 688-690.
- Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sohar, P. (1967). Acta Chim. Acad. Sci. Hung. 54, 91-106. [Cited in The Chemistry of the Amidines and Imidates (1975). Edited by S. Patai, p. 593. London: Wiley.]
- Spek, A. L. (1992a). PLATON92. Program for the Automated Analysis of Molecular Geometry. University of Utrecht, The Netherlands.
- Spek, A. L. (1992b). PLUTON92. Program for the Display and Analysis of Crystal and Molecular Structures. University of Utrecht, The Netherlands.
- Thailambal, V. G., Pattabhi, V. & Guru Row, T. N. (1986). Acta Cryst. C42, 587–589.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1998). C54, 1173-1175

sp-9-[o-(β -Chloro- α , α -dimethylethyl)phenyl]fluorene: an Unanticipated Exclusive Product from the Reaction of sp-9-(o-tert-Butylphenyl)-9-fluorenol with Thionyl Chloride

Paul D. Robinson,^a Yuqing Hou^b and Cal Y. Meyers^b

^aDepartment of Geology, Southern Illinois University-4324, Carbondale, IL 62901, USA, and ^bDepartment of Chemistry and Biochemistry, Southern Illinois University-4409, Carbondale, IL 62901, USA. E-mail: robinson@geo. siu.edu

(Received 19 January 1998; accepted 17 February 1998)

Abstract

The reaction of sp-9-(*o*-tert-butylphenyl)-9-fluorenol, (1), with thionyl chloride in CHCl₃ at room temperature quantitatively provided the title compound [(2), C₂₃H₂₁Cl], instead of the expected 9-(*o*-tert-butylphenyl)-9-chlorofluorene. Chlorination of an alkyl group under the conditions in which (1) was converted into (2) is apparently unprecedented. While the unexpected structure of (2) was suggested by ¹H and ¹³C NMR, unequivocal characterization required X-ray crystallographic analysis. Surprisingly, introduction of the Cl atom in (2) imposes only a few minor changes in the bonding parameters compared with its non-chlorinated counterpart, *sp*-9-(*o*-tert-butylphenyl)fluorene.

Comment

Thionyl chloride is the commonly used reagent in the classical conversion of an alcohol into its alkyl chloride, presumably through the S_N i mechanism (Schreiner et al., 1993). Accordingly, in our plan to convert sp-9-(otert-butylphenyl)-9-fluorenol [(1); Robinson et al., 1998; Nakamura et al., 1977] into the corresponding 9-(o-tertbutylphenyl)-9-chlorofluorene, (3), to determine whether it would be the ap or sp rotamer, or both (Meyers et al., 1997), we treated (1) with $SOCl_2$ in the usual manner (see Scheme below). The colorless crystalline product had the molecular formula of the desired product and a sharp melting point, and was isolated in quantitative yield, but its ¹H and ¹³C NMR spectra were incorrect for compound (3). The presence of a singlet for a CH_2 group together with a singlet representing two identical CH₃ groups suggested that the *tert*-butyl group had been monochlorinated. Such a transformation under these conditions was unprecedented. An X-ray diffraction study was thus undertaken to verify the structure.